WHO | - 80 - 7

100-03-1-101

BIOLOGICAL AND HYDROGRAPHIC STATION DATA OBTAINED IN THE VICINITY OF NANTUCKET SHOALS, MAY 1978 - MAY 1979

by

R. Limeburner and R. C. Beardsley Woods Hole Oceanographic Institution Woods Hole, MA 02543

anđ

W. Esaias Marine Science Research Center SUNY Stony Brook, NY 11790

January 1980

TECHNICAL REPORT

Prepared with funds from the Department of Commerce, NOAA Office of Sea Grant under Grant #04-7-158-44104 and #04-9-M01-149, EG&G Environmental Consultants Contract #54779, and Brookhaven National Laboratory Contract #424422-5.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanographic Institute Technical Report WHOI 80-7.

Approved for Distribution

Valentine Worthington, Chairman Department of Physical Oceanography

Table of Contents

		No.
Lis	st of Figures	1
Lis	st of Tables	4
Abs	stract	5
1.	Introduction	5
2.	Instrumentation	6
	A. CTD	6
	B. CTD Calibration Samples	6
	C. Biological Sampling	7
	D. Navigation	8
		-
.د	Data Analysis.	8
4.	Error Analysis	9
5.	Data Presentation	11
	A. Biological	11
	B. Hydrographic	11
6.	Acknowledgments	12
7.	Data	13
	A. Cruise NS1	13
	B. Cruise NS2	22
	C. Cruise NS3	27
	D. Cruise NS4	36
	E. Cruise NS5	44
	F. Cruise NS6	54
Ref	erences	75
vere		75
Арре	endix A. Tables of chlorophyll and nutrient data	76

Page

List of Figures

1.	Edgerto	n May, 1978	NSI crui	ise t	rack .		• •	•	•	•	•	•	•	13
2.	п	17	surface	chlo	rophy1]	L 	• •	•	•	•	•	•	•	14
3.	11	11	н	nitr	ate and	1 nitr	ite.	•	•	•	•	•		15
4.		78	*1	phos	phate	• • •	•••	•	•	•		•	•	16
5.	19	**	11	sili	cate .	• • •	• •	•	•	•	•	•	•	17
6.	Ħ	64	н	temp	erature		•••		•	•	•	•	•	18
7.	n	14	19	sali	nity .			•		•		•	•	19
8.	п	••		sigm	a-t			•			•	•	•	20
9.	Û.	u	п	T/S	correla	tion.		•	•			•		21
10.	11	July, 1978	NS2 crui	ise t	rack .			•	•			•	•	22
11.	н	п	surface	temp	erature	• • •			•				•	23
12.	11	18	n	sali	nity .				•	•	-			24
13.	Ħ	u	и	sigm	a-t .					_		_		25
14.	Ħ	n	97	T/S	correla	tion.		-	•	•	•	•	•	25
15.	+1	September.	1978 NS3	- / -	ise tra	ck.	••	•	•	•	•	•	•	20
16	11	"	2070 MOD	faco	abloro		•••	•	•	•	•	•	•	~ 1
***			341	.race	CHIOTO	pnyll	• •	•	•	•	•	•	•	28
1/.					nitrat	e and	nit	ri	te	•	•	٠	•	29
18.	.,	Ŧ		14	p hosp h	ate .	••	•	•	•	•	•	•	30
19.	"	11		14	silica	te .	•••	•	•	•	•	•	•	31
20.	Ħ	N		u	temper	ature		•	•	•	•		•	32
21.	**	n		+1	salini	ty .	••	•	•	•	•	-	•	33
22.	Ħ	M		F 1	sigma-	t		•	•		•	•		34
23.	78	U		"	T/S co	rrelat	ion				•	•		35

List of Figures (Contd)

Page

~

.

-

					No.
24.	Edgerton	January, 1979	NS4 crui	ise track	36
25.	**	U	surface	chlorophyll	37
26.	74	u	n	nitrate and nitrite	38
27.	и	u	u	temperature	39
28.	**	14	99	salinity	40
29.	88	п	17	sigma - t	41
30.	78	и	••	T/S correlation	42
31.	77	п	T/S (a 1)	l stations)	43
32.	11	March, 1979	NS5 crui	ise track	44
33.	11	н	surface	chlorophyll	45
34.	11	n	79	nitrate and nitrite	46
35.	н	a,	81	phosphate	47
36.	u	17	Ħ	silicate	48
37.	11	R	41	temperature	49
38.	19	M	\$1	salinity	50
39.		n	u	sigma-t	51
40.	n	TĂ	U	T/S correlation	52
41.	n	41	T/S (all	l stations)	53
42.	n	May, 1979	NS6 cru	ise track	54
43.		77	surface	chlorophyll	55
44.	18	н	ŧ	nitrate and nitrite	56
45.		11	μ	phosphate	57
46.		н	Tİ	silicate	58

List of Figures (Contd)

.

				Page No.
47.	Edgerton	May, 1979	vertical distribution of chlorophyll, nitrate and nitrite, nitrite and phosphate	59
48.	**	"	<pre>vertical distribution of ammonium, silicate, and pheopigments/ chlorophyll</pre>	60
49.	11		surface temperature	61
50.	n	••	" salinity	62
51.	, u	79	" sigma-t	63
52.	(1	u	" T/S correlation	64
53.	11		T/S (stations 10-42)	65
54.	1+	10	" (stations 43-61)	66
55.	n	14	section identification scheme	67
56.	н	11	vertical section A	68
57.	n	11	" " B • • • • • • • • • • • • • • • • •	69
58.	"	TI	" " C • • • • • • • • • • • •	70
59.		19	" " D • • • • • • • • • •	71
60.	51	U	" " E • • • • • • • • • • • •	72
61.	0	T	" " F	73
62.	н	н	" " G	74

3

.

List of Tables

																	P]	age <u>No.</u>
1.	CTD calibrat	ion	results .		• • •	٠	•	-	•	•	•	•	•	•	•	•	•	10
2.	Chlorophy11	and	nutrients	cruise	NS1	•	•	•	•	•	•	٠	•	•	•	•	•	77
3.	u	U	19	**	NS 3	٠	•	•		•	•	•	•	•	•	•	•	82
4.	11	11		n	NS4		-	•			•							86

t

.

H

-

Abstract

Six cruises were made from May, 1978 to May, 1979 to measure the regional distributions of chlorophyll, silicate, nitrate and nitrite, phosphate, temperature, and salinity in the vicinity of Nantucket Shoals on the New England continental shelf. A summary of the hydrographic observations made on the first three cruises has already been presented in Limeburner and Beardsley (1979). A summary of the biological data obtained on five of the six cruises and the hydrographic observations made during the last three cruises is presented here in graphic form.

1. Introduction

This report presents preliminary results of six hydrographic cruises made in the Nantucket Shoals region of the New England continental shelf. These cruises are part of a Sea Grant-supported research program designed to: a) measure and document the spatial and temporal structure and variability of the water properties in the Nantucket Shoals/Great South Channel region over one annual cycle; b) conduct a pilot moored current meter array experiment to obtain direct measurements of wind-driven and other subtidal transient currents; and c) synthesize the new hydrographic and current data into an improved circulation scheme for Nantucket Shoals. In addition, surface chlorophyll and nutrient data were obtained during the hydrographic cruises. A total of six surveys were completed at approximate intervals of one cruise every two months. The first hydrographic survey, Cruise NS1, was conducted May 28-June 2, 1978; the second survey, Cruise NS2, on July 15-20, 1978; the third survey, Cruise NS3, on September 14-19, 1978; the fourth survey, Cruise NS4, on January 23-29, 1979; the fifth survey, Cruise NS5, on March 22-26, 1979; and the sixth survey, Cruise NS6, on May 19-23, 1979. All six cruises were completed on the MIT 65-foot converted T-boat, the R/V EDGERTON. CTD stations were taken approximately every five nautical miles along a cruise track which

covered the coastal zone between one and fifty nautical miles offshore, and in the general area to the east and south of Cape Cod, Nantucket, and Marthas Vineyard. A summary of the hydrographic station data obtained during the first three cruises is given by Limeburner and Beardsley (1979) in WHOI Technical Report 79-30. The hydrographic data obtained during the last three cruises is presented in this report as well as maps of the surface hydrographic data from all of the cruises. Biological data obtained on five of the cruises is also presented here. The cruise tracks for all six cruises are shown with station locations, the station numbering scheme, and the regional topography. At station locations where strong tidal currents produced a vertically mixed water column, only a surface water sample was taken. A total of 10 CTD stations were taken on Cruise NS4, 24 CTD stations on Cruise NS5, and 29 CTD stations on Cruise NS6. The CTD data has been edited and analyzed at WHOI and 2 decibar averaged profile data has been submitted in GATE format to the National Oceanographic Data Center, Washington, D. C. 20235.

2. Instrumentation

A. CTD

A Plessy model 9040 CTD fish with a Plessy model 8400 digital data logger was used as the profiling instrument on all six cruises.

B. Calibration Samples

Surface nutrient and salinity samples were obtained at each station. Deep calibration samples were obtained using standard Nansen bottles at stations where the vertical salinity and temperature gradients were minimal. Surface temperature was measured with a Hewlett-Packard model 2850c quartz crystal temperature sensor. Normally, the CTD profile was begun at a depth of 2 meters, but frequently heavy seas required lowering the CTD fish to a depth of 4 meters before the profile was begun. The procedure was to attach the Nansen bottle 4 m above the CTD fish and lower the instrument to within 5 m of the bottom for a continuous down profile. The CTD fish was then raised until the Nansen bottle was

located in a zone of minimal temperature and salinity gradients as estimated from the analog temperature and conductivity downtraces. The winch was stopped and 5 minutes were allowed for the reversing thermometers to equilibrate before the bottle was tripped. The fish was then raised 4 m, the three instrument output frequencies logged, and then the fish was brought back to the surface. The Nansen bottle temperature represents the average of two protected thermometer measurements and has an estimated accuracy of $\pm.005^{\circ}$ C. The salinity of the surface and deep water samples were measured at Woods Hole within a week after each cruise.

C. Biological Sampling

Continuous underway chlorophyll fluorescence was measured with a Turner Design 10-005R fluorometer equipped with a blue lamp, and Corning 5-60 and 2-64 excitation and emission filters. Analogue outputs were recorded on a dual pen strip chart recorder. Water was supplied by a Jabsco impeller pump and opaque rubber hose from the ship's cooling intake sea chest (nominal depth about 1.5 meters). The cuvette was cleaned and the instrument blanked with distilled, deionized water when necessary. Calibration samples were taken from the outflow every 30 minutes or upon arrival on stations, whichever was less. The sample (135 ml) was filtered onto Reeve Angel 984H glass fiber filters under 20 cm Hg vacuum, and the filter immediately frozen over dissicant at -20°C. Surface (1.5 m) phytoplankton samples (125 ml) and nutrient samples (60 ml) were also taken from the fluorometer outflow and were preserved with Lugol's iodine or frozen in aged plastic bottles, respectively.

Discrete chlorophyll and nutrient samples were taken from the Nansen bottles used in conjunction with the CTD (section 2B) and were treated as described above.

Chlorophyll and nutrient samples remained frozen until analyzed at MSRC or Brookhaven National Laboratory, respectively. This took place within two weeks for chlorophyll, and within one month for

nutrients except that the March nutrient samples from NS5 were analyzed in July. Chlorophyll and pheophytin were determined fluorometrically following grinding in 90% acetone and filtration, using a Turner Designs fluorometer. This instrument was calibrated using freshly chromatographed chlorophyll <u>a</u> obtained from spinach (courtesy T. Owens, BNL). Concentrations of this stock were determined using extinction coefficient of 91.0 l/gm cm at the red peak measured on an Aminco DW-2 spectrophotometer. The calibration was checked periodically with coproporphyrin standards, and is considered accurate to within ±10%. The coefficient of variation for triplicate samples is approximately 5% for the technique.

Nutrients were analyzed on an Autoanalyzer Technicon couple interfaced with a Hewlett-Packard 9845 computer. Methods and precisions are given in Strickland and Parsons (1972).

D. Navigation

A Northstar 6000 Loran-C instrument was used on each cruise for an estimated position error of \pm .1 nautical miles at each station.

3. Data Analysis

The raw data tapes were first edited for proper header information and file structure using the WHOI computer program "TIDE". A second test of the structural integrity of the data files was made with program "PLSSY" (written by W. Sass) which transcribes the raw data into CTD format and detects any bad scans which are located in the data files. The data was then processed with program "AAA", a multi-level general CTD processing program written by J. Vermersch. This program can be used to: (1) apply user-specified calibration constants; (2) correct for sensor time lag; (3) compute salinity, sigma-t, and other derived variables; (4) edit up to four variables via first-difference or acceptable range methods; and (5) sort the data by pressure to provide a uniform pressure series. The linear corrections determined from

the calibration temperature and salinity measurements were not applied to the instrument temperature and conductivity data since the corrections were not significant in relation to the mode of presentation of (The calibration results are discussed in the next section the data. and the mean offsets of the CTD data listed in Table 1.) A time lag of 2.5 scans (.625 sec) was used on all station data from the six cruises. Previous hydrographic data analysis with the Plessy system experienced "spiking" of the salinity data in areas of strong temperature gradients due to the different time constants associated with the conductivity and temperature sensors of the fish. The spiking effects were minimized by the choice of time-lag given above, first difference editing of the data, and by pressure sorting at two decibar intervals with a least-square technique which gives the "best" value of each measured or computed variable at the center of each two-decibar interval. The two-decibar pressure-sorted data has been submitted in GATE format to NODC and has been used on all subsequent analysis and graphical presentations.

4. Error Analysis of the Hydrographic Data

Instrumental error in the hydrographic data is related to two possible sources: (a) an offset associated with the instrument calibration and obtained by comparison with the Nansen bottle data, and (b) the differential response time associated with the temperature and conductivity sensors in regions of strong vertical gradients. Table 1 summarizes the mean offset and standard deviations computed between the Nansen bottle and CTD calibration data. The offsets were calculated at CTD stations where no vertical temperature or salinity gradient was observed when the Nansen bottle was tripped. Plots of offset versus station number showed no recognizable calibration drift. The offsets given in Table 1 are small relative to the mode of presentation of the data, and thus the corrections were not applied to the data.

Vertical profiles and T/S diagrams indicated "spiking" of the salinity data in areas of strong, mid-level temperature gradients due to the

Table 1. CTD Calibration Results

-

.

~

	Number of			
Cruise	CTD Stations	Variable	Average Offset	Standard Deviation
NSI	108	Temp	+.006°C	.016°C
		Salinity	001 %	.015 %
NS2	120	Temp	.010°C	.021°C
		Salinity	015 ‰	.014 %
NS3	100	Temp	.001°C	.011°C
		Salinity	004 %。	.014 %
N54	10	Temp	-	-
		Salinity	-	-
NS5	24	Temp	004°C	.014°C
		Salinity	007 %,	.006 %
NS6	29	Temp	-009°C	.011°C
		Salinity	009 ‰	.009 %

different time constants associated with the conductivity and temperature sensors. The spiking effects were minimized by first difference editing of the data and by pressure sorting at two-decibar intervals, but unstable density stratification associated with a salinity spike is still apparent in approximately 1% of the edited data. When these apparent salinity and density errors were observed in the edited data a new salinity was calculated such as to give minimum stability to the density structure. These calculations were applied to the graphical data included in this report and were not applied to the edited data. Spiking in the hydrographic data was not evident during the two winter cruises when the water column was vertically well mixed in the top 100 m.

Each cruise lasted approximately five days so the data should be fairly synoptic in time. However, strong tidal currents essentially advect the hydrographic structure about the shoals in an elliptical pattern so there is an inherent noise level in the horizontal structure on the order of the M_2 tidal excursion, or 15 km.

5. Data Presentation

A. Biological

The chlorophyll and nutrient data for all cruises are presented in tabular form by cruise, station, and depth in Appendix A and as hand contoured surface distributions. One vertical section of all variables, taken 21 May 1979 eastward from Pollock Rip, is presented separately. Surface (1.5 m) chlorophyll distributions were contoured using primarily discrete calibration and station values, and interpolated with the aid of the continuous fluorometric record.

B. Hydrographic

The hydrographic data are presented in three formats: Surface distributions, vertical sections, and T/S correlations. Surface distributions of temperature, salinity, and density are presented for each of the six cruises. In winter during Cruises NS4 and NS5, the upper 100 m

of the water column was well mixed over the survey area and the surface distribution of temperature, salinity, and density reflect the distribution at depth. Vertical sections are given for Cruise NS6 to show the cross sectional hydrographic structure over the eastern edge of Nantucket Shoals. In general, the profiling instrument was lowered to within 5 m of the bottom and the deepest hydrographic parameters were considered to be equivalent to those at the bottom. Bottom boundary layers in excess of 5 m were frequently observed. The horizontal and vertical cross-sections are drawn with contour intervals of 1°C, 2 $\%_{\infty}$, and .2 in sigma-t. T/S diagrams are shown next for Cruises NS4, NS5, and NS6. The data begins at 2 m and the symbols are plotted along each line with a frequency of 10 m in depth. At stations over Nantucket Shoals, symbols may be overprinted on each other indicating a vertically well-mixed structure and minimal instrumental noise.

6. Acknowledgments

The six hydrographic cruises were supported by the Department of Commerce, NOAA Office of Sea Grant under Grant #04-7-158-44104 and #04-8-M01-149, and under EG&G Environmental Consultants Contract #1554779. R. Limeburner and R. Beardsly from WHOI served as co-chief scientists. Other scientific personnel included J. Vermersch, A. Jessup, and P. Daifuku from WHOI. B. Butman of the USGS graciously supplied the CTD fish, hydrowinch, and deck unit. V. Worthington piloted the July, 1978 inshore hydrographic survey.

The biological sampling was supported in part by Brookhaven National Laboratory contract #42332255 under DOE contract No. EY-76-C-02-0016, as part of the BNL Atlantic Coastal Ecosystem program. Scientific personnel included P. Kaneta, G. Garland, and R. Beck (MSRC), and T. Owens and J. Tokos (BNL). Nutrients were analyzed by S. Malloy (BNL).

The skill and competence of Howard Ossinger, Captain of the R/V EDGERTON, contributed significantly to the success of the six cruises.

Wayne Esaias present address: Mail Stop 272, NASA Langley Research Center Hampton, VA 23665

Ŀ

J.

;

208.0 208.0 194.0 136.0 112.0 106.0 172.0 114.0 38.0 90.0 86.0 0'**h**6 78.0 56.0 10,0 66.0 64.0 28.0 24.0 62.0 56.0 38.0 9**4**.0 8.0 0.0 ÷ $+ \times \times \times \times \times$ 下其米区 0000 ৰ ৰ + $+ \times$ \times 4 NS501272.5 NS501372.5 NS504272.5 NS505272.5 NS510272.5 NS501072.5 NS501172.5 ഗഗ ហ NS501872.5 ഗ ហ ហ LO I ŝ n ŋ ഗ in) NS503512.5 NS504112.5 S NS502672. NS5014T2. NS5024T2. NS501572. NS501672. NS501712. NS501972. NS5025T2. NS503012. NS503472. NS503272. NS503372. NS502312.

Figure 47. EDGERTON May 21, 1979. Vertical chlorophyll and nutrient distribution east of Monomoy Island.

Figure 48. EDGERTON May 21, 1979. Vertical chlorophyll and nutrient distribution east of Monomoy Island

180.0 102.0 70.0 38.0 28.0 20.0 70.0 10.0 56.0 74.0 78.0 24.O 58.0 36.0 2.0 ъ. 0 2. O <u>ខ</u>ខ Θ ব ∢ + +Х Ô Ð 4 4 × × NS603512.5 NS603612.5 NS601072.5 NS602712, 5 NS602872.5 NS603212.5 N\$602912.5 N5603012.5 NS603172.5 NS603312.5 NS603472.5 NS603712.5 NS604072.5 NS604172.5 NS604212.5

104.0 70.0 36.0 42.0 32.0 32.0 36.0 56.0 50.0 54.0 48.O 62.0 78.0 68.0 Ë KON € \succ +¤×* Ð М 4 NS605172.5 NS605272.5 NS605312.5 NS605512.5 N\$605712.5 NS605812.5 NS605972.5 NS606012.5 NS606112.5 NS604312.5 NS6044T2.5 NS604912.5 NS605012.5 NS605612.5

Figure 61

Figure 62

References

Limeburner, R. and R. Beardsley, 1979. Hydrographic Station data obtained in the vicinity of Nantucket Shoals, May, July, September, 1978. Woods Hole Oceanographic Institution Technical Report WHOI 79-30, 88 pp.

Strickland, J. D. H. and T. R. Parsons, 1972. A practical handbook for seawater analysis. Bull. Fish. Res. Board Can., 167.

APPENDIX A

(Stations 655, 855 refer to samples taken between 65, 66 and 85, 86. -- indicates no data.)

Table 2

.

.

CHLOROPHYLL AND NUTRIENT DATA NS1 - May '78

STA	DEPTH	CHL	PHEO	P04	SI04	NOS	N02
10 11 11 12 12	0 0 19 0 24	0.70 0.98 0.38 1.66 0.53	0.58 0.80 0.55 0.50 0.52	0.59 0.57 0.76	5.73 4.68 7.48	2.27 1.99 9.79	0.61 0.12 0.19
13 14 14 15 15	0 0 68 0 37	1.13 1.25 0.19 1.01 0.12	0.29 0.68 0.20 0.64 0.19	 0.74 0.75	8.06 6.55	9.98 9.55	0.32 0.29
16 16 17 17 18	0 60 9 70 9	0.82 0.11 0.46 0.12 0.65	0.45 0.25 0.34 0.31 0.42	0.76 0.87	6.68 10.70	10.31	0.20 0.07
18 19 19 20 20	84 9 67 9 1 6	0.08 0.87 0.14 0.89 0.87	0.18 0.39 0.35 0.61 0.71	0.24 0.77 0.25 0.33	2.69 7.22 1.87 2.97	0.10 9.55 0.05 0.85	0.05 0.20 0.03 0.07
21 22 23 23 24	0 0 51 0	1.22 0.66 0.77 0.12 1.34	0.70 0.34 0.65 0.37 0.50	0.33 0.26 0.26 0.60 0.19	1.82 1.23 2.84 4.97 2.28	0.05 0.05 0.05 5.68 0.05	0.03 0.02 0.35 0.21 0.34
25 27 28 28 29	54 0 5 0	0.04 0.22 1.05 0.94	0.06 0.21 0.66 0.40	0.79 0.33 0.17 0.78 0.25	9.17 1.92 1.74 1.87 1.95	11.83 0.24 0.10 0.05 0.05	0.34 0.07 0.07 0.05 0.05
30 30 31 31 32	0 6 41 9	0.50 0.84 0.74 0.19 0.54	0.37 0.69 0.42 0.45 0.36	0.27 0.20 0.29 0.55 0.19	2.64 1.54 2.79 4.78 3.06	0.57 0.05 1.22 4.28 0.30	0.08 0.04 0.10 0.30 0.15
32 33 33 34 34	29 0 81 -0 78	0.31 0.43 0.11 0.67 0.09	0.57 0.36 0.25 0.29 0.37	0.60 0.19 0.76 70.20 0.78	4.53 2.77 6.58 2.72 8.02	4.74 0.38 8.98 0.32 10.29	0.32 0.15 0.34 0.14 0.35

.

.

STA	DEPTH	CHL	PHEO	P04	S104	NOS	N02
35 35 36 37	0 40 0 20 0	0.48 0.17 0.43 0.25 0.48	0.40 0.29 0.33 0.33 0.33	0.19 0.62 0.17 0.45 0.48	2.83 5.98 2.12 4.20 4.18	0.40 8.20 0.34 3.78 3.82	0.16 0.35 0.16 0.29 0.30
37 38 38 39 39	15 0 23 0 42	0.28 1.34 0.34 1.03 0.12	0.37 1.29 0.40 0.51 0.33	0.57 6.42 0.47 0.56 0.73	4.10 4.29 4.32 3.63 6.37	3.82 3.72 3.71 2.33 8.00	0.30 0.30 0.30 0.27 0.38
40 40 41 41 41	0 77 0 10 20	0.72 0.06 0.48 0.74 1.15	0.33 0.33 0.26 0.50 0.60	0.17 0.93 0.25 0.13 0.19	2.41 8.31 2.31 2.27 2.45	0.33 11.39 0.41 0.40 0.40	0.20 0.37 0.22 0.20 0.36
41 41 41 41 41	30 40 50 75 100	0.23 0.29 0.08 0.06 0.06	0.30 0.36 0.27 0.27 0.19	0.44 0.60 0.82 0.93 0.97	3.25 4.15 6.00 8.89 11.04	4.17 6.72 9.07 12.85 14.78	0.43 0.49 0.34 0.24 0.35
42 42 43 44 44	0 118 0 70	0.38 0.11 1.20 0.87 0.44	0.21 0.25 0.22 0.42 0.61	0.26 1.01 0.53 0.53 0.61	2.83 8.59 4.62 4.37 5.37	0.07 11.23 4.42 3.89 5.31	0.05 0.21 0.17 0.20 0.21
45 45 46 47	0 45 0 21 0	0.83 0.58 1.34 0.78 0.85	0.62 0.44 0.77 0.53 0.81	0.48 0.47 0.63 0.30 0.44	3.81 3.79 3.80 3.42 4.22	2.94 3.17 1.94 1.56 2.62	0.19 0.22 0.10 0.08 0.12
47 48 48 49 50	28 0 15 36 0	0.50 2.69 2.23 1.30 1.22	0.49 0.75 0.66 0.63 0.36	0.39 0.37 0.30 0.42 0.45	4.10 2.74 2.72 3.77 3.19	2.60 8.90 8.85 2.51 1.90	0.11 0.10 0.07 0.16 0.12
50 51 52 52	60 0 45 0 40	2.41 0.89 1.27 8.98 4.42	0.54 0.33 0.34 0.23 1.33	0.32 0.31 0.28 0.28 0.39	2.60 2.63 2.87 2.53 2.53	1.47 1.84 1.51 0.10 1.23	0.11 0.04 0.08 0.06 0.06

CHLOROPHYLL AND NUTRIENT DATA NS1

CHEOROPHYLE AND NUTRIENT DATA NS1

ាក	DEPTH .	. CHL	PHEO	P04	SI04	N03	N02
53 53 54 55 55	0 43 9 32 9	1.32 2.90 0.76 3.01 2.69	0.36 0.38 0.16 1.15 0.88	0.39 0.31 0.27 0.41 0.29	2.24 2.52 2.14 3.45 2.25	0.90 0.93 0.05 0.47 0.01	0.08 9.05 0.01 8.03 0.01
55 56 57 57	20 0 27 0 29	6.08 1.30 1.45 1.58 2.28	3.74 0.57 0.79 0.63 1.01	0.35 0.25 0.28 0.29 0.30	2.02 2.10 1.93 2.36 2.81	0.05 0.01 0.01 0.24 0.71	0.01 0.01 0.02 0.03 0.07
58 58 60 61	0 28 0 8 0	1.78 1.13 1.08 0.50 0.67	0.95 0.85 0.76 0.41 0.40	0.29 0.31 0.36 0.49 0.20	2.84 2.92 3.81 3.75 3.80	0.90 0.99 2.09 2.29 2.43	0.04 0.06 0.00 0.11 0.13
62 62 63 63 64	0 16 9 16 0	0.36 0.56 1.18 0.46 0.59	1.43 0.36 0.61 0.54 0.22	0.95 0.93 0.30 0.42 0.18	3.90 3.94 3.26 3.97 3.15	2.53 2.49 0.41 2.40 0.04	0.13 0.11 0.05 0.14 0.03
64 65 655 66 66	18 0 0 11	0.64 1.34 1.54 1.96 1.09	0.52 0.75 0.80 0.72 0.64	0.38 0.41 0.49 0.29 0.28	3.80 3.44 2.97 2.81 2.91	1.84 1.08 0.80 0.67 0.81	0.07 0.06 0.06 0.05 0.07
68 68 70 70 71	0 11 0 11 0	2.05 0.98 1.66 70.00 1.20	0.88 0.74 0.81 11.00 0.67	0.27 0.26 0.37 0.32	2.69 2.74 3.34 3.28	0.63 0.63 1.58 1.77	0.07 0.07 0.13 0.12
72 72 73 74 74	0 29 0 6 21	2.30 1.16 1.60 1.83 1.54	1.07 0.85 1.01 0.86 0.96	0.35 0.27 0.28 0.25 0.24	2.41 2.86 2.39 2.38 2.07	0.26 1.02 0.41 0.46 0.27	0.17 0.12 0.07 0.08 0.05
75 75 76 77	0 13 0 10 -0	1.39 1.14 1.56 1.05 0.99	0.92 0.97 0.78 0.58 0.58	0.27 0.29 0.21 0.26 0.23	2.37 2.31 2.10 2.52 2.19	0.10 0.14 0.14 0.01 0.01	0.05 0.08 0.06 0.08 0.08

CHLOROPHYLL AND NUTRIENT DATA NS1

.

.

-

'STA	DEPTH	CHL	FHEO	P04	SI04	N03	N02
778 788 79	32 0 50 40	0.82 1.27 2.18 0.72 2.14	0.31 0.37 6.22 0.16 0.13	0.23 0.48 0.35 0.22 0.31	2.27 5.27 3.91 2.31 3.92		0.07 0.10 0.07 0.05 0.07
- 80 80 81 81 82	0 35 0 35 0	0.70 2.33 0.84 0.77 2.39	0.15 0.42 0.32 0.19 1.30	0,26 0,21 0,15 0,33 0,32	1.96 1.83 2.22 2.86 2.64		0.07 0.04 0.05 0.01 0.04
83 84 85 85 855	13 0 26 0	1.16 1.63 1.80 1.49 1.94	0.64 0.71 0.64 0.86 0.74	0.24 0.19 0.77 0.21 0.20	2,82 1.90 1.98 1.98 2.75		0.01 0.02 0.04
86 87 83 88	ଡ ସ ହ ଅ ଅ ଅ	3.12 1.25 1.39 2.03 1.45	1.16 0.74 0.93 0.81 0.77	0.20 0.20 0.21 0.26 0.25	3.24 2.81 2.68 2.72 2.91	0.24 0.28	0.03 0.01 0.04 0.03 0.05
89 90 92 94	6 9 5 9 9	1.65 1.61 1.15 1.01 1.06	0.96 0.84 0.72 0.52 0.50	0,22 0.30 0.32 0.21 0.30	1.52 3.35 3.39 1.43 3.52	0.90 0.90 0.05 0.05	0.02 0.07 0.08 0.02 0.01
95 95 96 97 98	0 8 0 0	0.99 0.70 1.22 1.04 1.17	0.58 0.41 0.84 0.61 0.74	0.34 0.24 0.24 0.26 0.12	3.40 2.32 2.05 2.39 1.72	0.10 0.10 0.05 0.01 	0.03 0.02 6.02 8.01
99 100 100 101 101	0 0 32 0 9	1.20 1.52 1.18 1.41 0.98	0.82 0.88 0.58 0.82 0.82 0.63	0.17 0.16 0.12 0.20 0.20	0.18 1.81 1.85 1.65 1.38		
102 103 103 104 105	0 0 10 0 0 0	1.22 2.07 1.67 0.83 1.01	0.79 0.72 0.91 0.28 0.21	0.20 0.24 0.17 0.27 0.27	1.33 2.20 2.09 2.34 2.39		0.61 0.01 0.01 0.01 0.01

CHLOROPHYLL AND NUTRIENT DATA NS1

-

-

STA	DEPTH	CHL	PHEO	P04	SI04	N03	N02
106	0	1.17	0.31	0.27	2.18		0.04
106	36	0.80	0.57	0.32	4.38	0.01	0.03
107	0	0.78	0.11	0.23	2.33	0.01	0.03
107	30	0.80	0.12	0.27	3.19	0.01	0.03
108	0	0.48	0.23	0.20	2.67	0.01	0.03
108	41	1.00	0.16	0.31	4.62	0.11	0.04
109	0	0.89	0.30	0.28	2.66	0.01	0.04
109	41	1.10	0.12	0.34	5.22	0.06	0.03
110	0	0.74	0.19	0.30	2.25	0.07	0.03
110	33	0.65	0.17	0.33	4.80	0.12	0.06
111	0	0.82	0.26	0.19	2.29	0.17	0.01
111	31	0.64	0.36	0.20	4.23	0.03	0.05
112	0	0.65	0.17	0.13	2.38	0.12	0.01
112	21	0.55	0.27	0.27	4.17	0.01	0.05
112	0	0.65	0.30	0.24	2.22	0.04	0.03
113	23	0.98	0.74	0.33	3.85	0.04	0.05
114	0	0.58	0.36	0.11	1.44	0.04	0.03
115	8	0.62	0.40	0.02	1.13	0.05	0.04
115	8	0.98	0.63	0.19	1.54	0.05	0.04
116	0	0.44	0.19	0.12	1.73	0.04	0.01
116	17	1.00	1.01	0.20	2,81	0.09	0.01
117	0	0.60	0.21	0.08	2.60	0.08	0.02
117	19	1.69	0.84	0.27	3.57	0.08	0.02
118	0	0.65	0.20	0.27	2.75	0.13	0.05
118	17	1.25	0.75	0.32	4.18	0.13	0.05
119	0	0.53	0.41	0.17	3.15	0.12	0.01
120	0	0.48	0.13	0.16	2.79	0.12	0.01
121	0	0.62	0.25	0.15	2.70	0.12	0.01
122	0	0.50	0.23	0.13	1.28	0.07	0.01
123	0	0.43	0.19	0.24	2.74	0.12	0.01
124 125 126 127 128	9 9 9 9	0.60 0.79 0.62 0.42 0.48	0.21 0.37 0.20 0.25 0.25	0.20 0.20 0.21 0.26 0.23	2.89 2.17 2.17 2.22 1.65	0.12 0.11 0.11 0.11 0.11	0.02 0.03 0.03 0.03 0.03 0.03
128 129 129 130 131	24 0 0 0	1.01 0.43 0.80 0.91 1.06	0.66 0.23 0.57 0.45 0.87	0.31 0.21 0.41 0.36 0.41	3.44 1.85 4.15 2.21 2.56	0.25 0.10 0.34 0.10 0.10	0.07 0.03 0.05 0.05 0.05

Table 3

0

Ø

0

. 0

38 _

.

0.81

0.90

0.04

1.88

1.48

0.35

0.46

0.06

1.45

0.25

0.97

0.36

0.53

0.59

9.08

2.26

3.86

0.33

--

11.79

0.89 3.17

0.14

0.14

0.10 0.21

.

4	(53	CHLOROP	HYLL AND	HUTRIEHT	DATA - Se	ptember '7	78
STR	DEFTH	CHL	PHEO	F04	SI04	NOC	N02
10 10 11 12 12	0 52 0 42	1.71 0.09 3.43 1.71 0.26	0.66 0.22 0.62 0.56 0.45	0.42 0.99 0.46 0.35 0.79	0.71 10.71 1.48 1.43 7.15	0.08 11.17 0.58 0.19 7.70	0.26 0.10 0.09 0.24 0.10
13 13 15 15 16	0 0 99 0	2.31 1.71 1.58 0.04 0.74	0.52 0.81 0.44 0.11 0.76	0.50 0.39 0.30 1.13 0.27	0.98 1.03 0.52 11.08 0.88	0,24 0.19 0.14 14,33 0.28	0.12 0.12 0.11 0.11 0.11
16 17 18 18	10 8 0 109 0	0.69 0.64 2.53 0.02 1.32	0.43 0.27 1.06 0.05 0.46	0.24 0.40 0.50 3.40 0.43	0.68 0.84 0.84 13.18 0.64	0.14 0.28 0.33 16.09 0.33	0.10 0.17 0.14 0.15 0.15
19 20 21 22	116 0 44 0 0	0.09 1.88 1.71 1.76	0.12 0.64 1.32 0.47	1.57 0.42 0.51 0.41	11.10 0.88 1.80 1.31 0.85	13.79 0.90 1.27 0.66 0.33	0.12 0.19 0.17 0.10 0.09
23 23 25 25 26	0 61 0 51 0	1.14 0.09 0.90 0.09 1.16	0.41 0.12 0.42 0.22 0.56	0.23 0.66 1.72 0.41	0.68 4.94 0.60 5.17 1.50	0.24 6.35 2.29 7.39 0.59	0.11 0.08 0.07 0.08 0.14
26 28 28 230 31	11 0 3 0 0	0.34 3.21 4.71 1.37 1.35	30.00 1.08 1.35 0.55 0.54	0.31 0.39 0.56 0.23 0.20	1.66 0.32 0.30 0.47 0.35	0.79 0.28 0.24 0.55 0.22	0.22 0.20 0.15 0.38 0.11
31 32 33 33 33	39 0 54 0 145	0.10 0.26 0.09 0.69 0.69	0.38 0.15 0.07 0.53 0.07	0.68 0.25 0.47 0.23 0.97	4.38 0.70 4.40 0.69 9.54	5.79 0.34 3.86 0.48 11.35	0.20 0.12 0.05 0.15 0.14

82

Ø.26 0.10 0.09 0.24 0.10

0.12 0.12 0.11 0.110.11

STA	DEPTH	CHL	PHEO	P04	\$104	N03	N02
37 38 39 39 40	19 0 21 0	1.71 . 2.92 1.76 1.54 1.46	0.81 1.06 0.97 0.84 0.82	0.56 0.49 0.64 0.58 0.35	3.50 4.36 4.33 15.68 2.82	3.29 2.49 4.88 7.14 0.85	0.23 0.17 0.22 0.22 0.12
41 41 42 43	0 10 0 57	0.51 0.94 1.62 0.43 0.30	0.30 0.62 0.60 1.39 0.51	0.20 0.25 0.56 0.55 0.65	1.93 2.07 4.50 4.06 5.47	0.12 0.16 3.96 4.26 6.60	0.07 0.08 0.32 0.28 0.18
44 45 45 46 47	0 0 25 0 0	0.75 1.50 0.86 1.03 1.70	0.45 0.57 0.61 0.67 0.86	2.73 0.52 0.38 0.48 0.59	3.51 3.82 3.52 2.86 3.55	4.59 4.26 4.18 3.33 4.02	0.19 0.24 0.14 0.19 0.25
47 48 49 49 51	22 0 0 42 0	1.63 1.80 1.71 1.13 0.86	0.90 1,13 0.76 0.70 0.46	0.58 0.98 0.84 0.80 0.89	3.69 1.51 2.68 3.10 1.74	4.02 2.12 2.91 2.91 0.93	0.26 0.22 0.37 0.37 0.37
51 52 53 53 54	57 0 0 46 0	1.11 0.86 1.84	0.55 0.46 0.94	0.52 0.34 0.47 0.52 0.41	2.65 1.67 2.82 9.04 1.32	1.91 0.21 2.57 4.46 2.01	0.27 0.08 0.31 0.34 0.22
55 55 56 57 57	0 35 0 30	3.60 2.06 2.70 1.42 0.54	1.26 1.08 0.49 0.52 0.63	0.32 0.43 0.45 0.20 0.66	0.96 1.78 3.00 0.82 5.02	1.30 1.91 2.51 0.25 4.69	0.22 0.34 0.35 0.07 0.44
58 59 59 60 61	0 0 45 0 8	0.75 0.86 0.56 2.57 1.76	0.36 0.40 0.40 1.47 0.97	0.32 0.28 0.63 0.46 0.49	1.62 1.56 5.35 1.76 2.05	0.43 0.23 4.66 1.27 1.25	0.12 0.08 0.42 0.31 0.22
61 62 63 63 63	28 0 0 25 0	1.63 1.89 1.84 1.67 2.34	1.51 0.98 0.89 1.16 1.27	0.48 0.50 0.49 0.57 0.50	1.95 2.37 2.70 3.24 1.74	1.20 2.23 2.66 2.94 1.88	0.25 0.23 0.22 0.26 0.24

NS3

٠

CHLOROPHYLL AND NUTRIENT DATA

-

.

-

.

NS3 CHEOROPHYLL AND NUTRIENT DATA

STA	DEPTH	CHL	PHEO	P'04	\$104	N03	N02
65 66 67 68	0 9 12 0 0	2.36 2.87 1.67 2.86 2.04	1.44 1.33 1.41 1.33 2.01	0.67 0.53 0.54 0.45 0.42	1.51 1.04 1.32 1.59 1.96	1.95 1.18 1.37 0.88 0.98	0.25 0.19 0.24 0.15 0.17
68 69 70 70 71	17 0 0 11 0	1.93 0.86 1.20 0.69 1.07	1.36 0.41 0.52 0.53 0.50	0.58 0.47 0.23 0.64 0.51	14.69 3.19 1.23 5.10 3.62	7.40 1.87 0.53 5.42 3.88	0.35 0.15 0.09 0.20 0.22
72 72 73 74 74	0 9 0 7	1.20 0.77 2.31 2.30 2.48	0.62 0.49 1.02 1.77 1.66	0.42 0.42 0.48 0.33 0.26	4.68 3.09 2.84 1.49 1.21	4.99 3.41 2.05 0.54 0.37	0.21 0.14 0.18 0.10 0.10
75 76 76 77 78	0 0 7 0 0	2.27 1.34 0.94 2.06 2.78	1.12 1.15 1.08 1.58 1.01	0.38 0.56 0.39 0.55 0.48	0.48 1.19 0.61 1.78 1.88	0.48 0.83 0.51 1.79 1.43	0.13 0.18 0.24 0.22
79 80 80 81 82	0 0 23 0 0	2.78 2.36 1.70 2.14 1.18	1.01 1.54 0.97 0.97 0.60	0.40 0.44 0.43 0.30	1.51 1.88 14.11 1.69	0.61 0.70 4.09 0.16	0.11 6.12 0.24 0.07
82 83 84 85 86	30 0 0 0	0.52 0.37 1.80 2.14 1.71	0.59 0.18 0.93 0.89 1.32	0.67 0.18 0.45 0.51 0.42	5.77 2.77 1.40 1.61 1.21	3.84 0.55 1.16 0.35 8.25	0,47 0,10 0,53 0,12 0,08
87 88 89 90 91	0 0 0 0	2.14 1.58 2.31 1.76 3.08	0.89 0.94 1.53 1.23 1.36	0.37 0.38 0.32 0.19 0.26	0.20 0.51 0.42 0.88 0.07	0.25 0.25 0.20 0.35 0.15	6.08 6.69 6.68 6.69 6.69
92 93 94 95 96	0 8 0 0 0	3.86 3.00 2.30 2.23 1.97	1.20 1.55 1.25 1.21 0.98	0.92 0.72 0.79 0.48 0.74	2.73 0.80 1.98 1.02 9.29	2.61 0.20 0.39 0.15 1.92	0.20 0.09 0.09 0.05 0.14

STA	DEБ⊥H	CHL	PHEO	F04	\$104	N03	NOS
97 98 99 100 101	ଡ ଡ ଡ ଡ	2.52 2.59 2.66 2.31 1.46	1.41 1.27 1.29 1.02 0.77	0.42 0.61 0.58 0.70 0.50	0.11 0.89 0.54 0.54 0.24	0.24 0.29 0.24 0.34 0.19	0.11 0.11 0.08 0.11 0.07
102 103 103 104 105	0 13 0 0	1.62 1.93 2.23 2.40 0.56	0.75 1.10 0.96 1.34 0.35	0.47 0.44 0.34 0.18 0.13	0.63 1.15 1.18 1.83 1.25	0.17 0.24 0.17 0.29 0.32	0.07 0.09 0.08 0.09 0.09
105 106 107 107 108	28 0 39 0	1.37 0.32 0.19 0.19 0.81	0.85 0.06 2.00 0.38 0.57	0.48 0.35 0.18 0.52 0.29	4.57 2.23 1.13 7.00 1.84	1.53 0.48 0.24 3.83 0.28	0.32 0.12 0.10 0.44 0.09
189 109 110 111 111	0 41 0 6 7	1.08 9.69 0.52 0.69	0.43 0.48 0.40 0.33	0.29 0.85 0.33 0.36	1.84 13.10 1.82 2.24 2.34	0.15 8.26 0.23 	0.08 0.68 0.11 0.11 0.10
112 113 113 114 115	0 0 24 0 0	1.11 1.74 1.63 2.18 1.63	0.50 0.89 1.10 1.42 1.10	0.39 0.53 0.62 0.84 0.68	1.43 2.20 4.72 0.92 2.65		0.10 0.13 0.24 0.13 0.13
115 116 117 117 118	14 0 0 13 0	0.73 2.13 1.18 1.20 0.56	1,50 1,37 0,47 0,52 0,20	0.28 0.36 0.33 0.34	2.19 0.97 1.42 0.96		0.11 0.08 0.12 0.11
120 0 0 0	0 0 0 0 0	0,98	0.63 	0.37 	1.04 		0.10 +-

CHEOROPHYLL AND NUTRIENT DATA

	NS4	CHLOROP	HYLL AND	NUTRIENT	DATA - Jar	uary '79	
STA	₽ЕРТН	CHL	PHEO	P04	SI04	N03	N02
1 2 3 4 5	0 0 0 0	2.60 6.19 5.78 6.60 7.43	1.15 0.62 1.04 2.16 1.34	0.76 0.71 0.86 0.62 0.74	1.34 0.79 0.37 0.61 2.32	2.12 0.85 0.15 9.25 2.19	0.14 0.09 0.06 0.07 0.14
6 7 8 9 10	0 0 0 0	3.71 1.28 1.16 1.24 2.56	0.67 0.43 0.31 0.42 1.24	1.19 0.96 1.10 0.99 1.09	3.55 4.60 6.01 3.85 5.12	4.96 6.67 8.46 5.69 7.35	0.20 0.20 0.20 0.17 0.24
11 12 13 14 15	0 0 0 0	5.78 9.90 4.95 4.13 6.19	1.53 1.78 0.89 0.74 1.11	0.98 0.61 0.61 0.76 0.64	2.37 0.56 0.00 0.00 0.00	3.24 0.27 0.11 0.14 0.32	0.18 0.08 0.06 0.06 0.07

Table 4

..

.

-

NS4 CHLOROPHYLL AND NUTRIENT DATA

STA	DEPTH	CHL	PHEO	P04	SI04	N03	N02
11 13 14 21 22	0 0 0 0 0	1.24 0.39 0.26 0.69 1.07	0.33 0.12 0.15 0.23 0.29	1.03 1.12 0.96 0.84 0.99	6.61 10.05 8.56 7.02 8.05	8.35 12.99 10.45 8.60 9.51	0.32 0.15 0.08 0.19 0.20
23 24 25 26 27	0 8 8 8	0.73 0.21 0.60 0.86 0.77	0.28 0.04 0.21 0.36 0.64	0.78 1.09 0.93 0.76 0.70	7,59 9.28 7.02 6.46 4.20	6.20 11.85 8.83 7.48 5.05	0.13 0.22 0.18 0.20 0.12
28 29 30 32 33	0 0 0 0	1.37 1.03 0.56 0.39 0.31	1.21 0.49 0.25 0.17 0.13	1.13 1.20 0.76 0.71 0.66	7.23 8.05 4.10 6.66 4.46	10.10 10.72 5.37 6.82 5.72	0.28 0.23 0.12 0.15 0.14
34 35 36 37 39	0 0 0 0 0	0.43 0.47 0.47 0.86 0.86 0.47	0.13 0.24 0.09 0.56 0.44	1.02 0.88 0.78 0.85 0.92	8.05 5.84 5.48 4.97 6.36	11.20 7.42 7.32 7.02 8.56	0.21 0.17 0.18 0.18 0.18
40 41 42 43 45	0 0 0 0	0.51 0.41 0.21 0.34 0.46	0.09 0.13 0.04 0.16 0.25	1.19 1.21 1.19 0.82 0.93	3.63 4.36 4.15 4.07 7.86	12.35 13.01 12.96 12.69 12.39	0.26 0.15 0.17 0.20 0.18
46 51 52 53 54	0 0 0 0	0.56 0.56 1.03 0.26	0.40 0.41 0.49 0.25 	0.76 0.87 0.85 0.60 0.82	5.58 7.11 5.78 5.00 7.03	9.16 11.30 9.15 8.15 11.19	0.19 0.25 0.21 0.20 0.23
55 56 57 58 59	0 0 0 0 0	1.29 1.30 4.46 6.00 4.93	1.04 1.03 1.10 1.59 1.14	0.89 1.04 0.26 0.22 0.65	5.74 4.33 0.00 0.23 0.00	9.83 7.59 0.45 0.37 0.23	0.27 0.22 0.10 0.09 0.09
60 61 62 63 64	0 0 0 0 0	4.50 3.43 1.20 1.20 1.54	1.57 1.63 0.32 0.47 0.68	0.41 0.60 0.86 0.77 0.92	0.00 0.00 7.19 5.99 5.93	0.15 1.31 10.88 9.03 8.86	0.07 0.13 0.25 0.20 0.29

BIBLIOGRAPHIC DATA SHEET 1- Report No. WHOI-80-7		3. Recipient's	Accession No.
4. Title and Subtitle		5. Report Date	2
RIDIOCICAL AND HYDROGRAPHIC STATION DATA ORTAIN		January	1980
VICINITY OF NANTHOVET SHOALS MAY 1978 - MAY 197		6.	
VIGINITY OF NANTOCKET SHORES, MAT 1970 - MAT 1971	,		
7 Author(s)		8. Performing	Organization Rept.
R. Limeburner, R.C. Beardsley and W. Esaias		No.	organization repri
		10 Project/T	ask/Wark Dair No
Woode Hole Oceanographic Institution		IV. FICICUT	ask/work Onterio.
Woods Hole Oceanographic Institution		11 6	<u> </u>
WOODS HUTE, MA 02040		NA 7 1EO	AAIDA DA D
		04-7-130-	-44104, 04-9- 1
		MUI-149,	EG&G #54//9 *
12. Sponsoring Organization Name and Address		13. Type of R	eport & Period
		Covered	
Department of Commerce, NOAA Office of Sea Grant		Technic	al
		14.	
15 Supplementary Notes			
The suppression of the second			
* Brookhaven National Laboratory Contract #42442	2-S		
16 Abstracts			
Civ anuiteas vens mada from May 1070 to May	1070 ± 0 mos	ب مطلح مدرية	a a fan a 1
Six cruises were made irom may, 1570 to may	9 13/3 LO Medi	sure une r	egional
distributions of chiorophyli, silicate, nitrate a	na nitrite, p	nospnate,	temperature,
and salinity in the vicinity of Nantucket Shoals	on the New Eng	gland cont	tinental
shelf. A summary of the hydrographic observation	s made on the	first thr	ree cruises
has already been presented in Limeburner and Bear	dsley (1979).	A summar	rv of the
biological data obtained on five of the six cruis	es and the hv	dmoranhic	ohserva-
tions made during the last three cruises is prese	nted hore in d	oranhic fo	
I crons made during the rase three cronses is prese	пьеч нете ин	uravnic it	* • • • • •
		3	
		3 p -	
		3 p -	
		y F · · · - · -	
		3	
		3	
		3	
17. Key Words and Document Analysis. 170. Descriptors		3	
17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlomophyll 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophy11 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophy11 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophy11 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophy11 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophy11 		3	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophy11 		3	
 17. Key Words and Document Analysis. 17e. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 17b. Identifiers/Open-Ended Terms 		3	
 17. Key Words and Document Analysis. 17e. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 17b. Identifiers/Open-Ended Terms 		3 • • p • • • •	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 17b. Identifiers/Open-Ended Terms 		3	
17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 17b. Identifiers/Open-Ended Terms		3 • • p • • • •	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chiorophyll 17b. Identifiers/Open-Ended Terms 		3 • • p • • • •	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 17b. Identifiers/Open-Ended Terms 		3 • • p • • • •	
 17. Key Words and Document Analysis. 17e. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 17b. Identifiers/Open-Ended Terms 		3 • • p • • • •	
 17. Key Words and Document Analysis. 170. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophy11 17b. Identifiers/Open-Ended Terms 		3 • • p • • • •	
 Key Words and Document Analysis. 17e. Descriptors Hydrography Nutrients Chlorophyll I7b. Identifiers/Open-Ended Terms 17c. COSATI Field/Group 		3	
 17. Key Words and Document Analysis. 17e. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 17b. Identifiers/Open-Ended Terms 17c. COSATI Field/Group 18. Availability Statement 	19. Security Cla	ass (This	21. No. of Pages
 17. Key Words and Document Analysis. 17e. Descriptors 1. Hydrography 2. Nutrients 3. Chlorophyll 17b. Identifiers/Open-Ended Terms 17c. COSAT1 Field/Group 18. Availability Statement 	19. Security Cla Report)	ass (This	21. No. of Pages 87
 17. Key Words and Document Analysis. 17e. Descriptors Hydrography Nutrients Chlorophyll 17b. Identifiers/Open-Ended Terms COSATI Field/Group 18. Availability Statement 	19. Security Cla Report) UNCLAS 20. Security Cla	ass (This SIFIED ass (This	21. No. of Pages 87 22. Price
 17. Key Words and Document Analysis. 17e. Descriptors 1. Hydrography 2. Nutrients 3. Chiorophy11 17b. Identifiers/Open-Ended Terms 17c. COSAT) Field/Group 18. Availability Statement 	19. Security Cla Report) UNCLAS 20. Security Cla Page	ass (This SIFIED ass (This	21. No. of Pages 87 22. Price

March 1979

DISTRIBUTION FOR SEA GRANT REPORTS

No. of Copies	Address
3	National Sea Grant Depository Pell Marine Science Library University of Rhode Island Kingston, RI 02881
1	Ms. Mary Holliman Sea Grant 70's Food Science Department V.P.I. and S.U. Blacksburg, VA 24060
5	Office of Sea Grant 6010 Executive Boulevard Rockville, Maryland 20852 ATTN: Dr. Naida Yolen
25	Mrs. E. Downs Acquisitions Section, IRDB-D823 Lib. & Info. Serv. Div., NOAA 6009 Executive Blvd. Rockville, Md. 20852

... •